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On the large deviation rate function for the empirical
measures of reversible jump Markov processes�

Paul Dupuisyand Yufei Liuz

Division of Applied Mathematics
Brown University

Providence, RI 02912

September 12, 2013

Abstract
The large deviations principle for the empirical measure for both continuous

and discrete time Markov processes is well known. Various expressions are avail-
able for the rate function, but these expressions are usually as the solution to a
variational problem, and in this sense not explicit. An interesting class of con-
tinuous time, reversible processes was identi�ed in the original work of Donsker
and Varadhan for which an explicit expression is possible. While this class in-
cludes many (reversible) processes of interest, it excludes the case of continuous
time pure jump processes, such as a reversible �nite state Markov chain. In
this paper we study the large deviations principle for the empirical measure of
pure jump Markov processes and provide an explicit formula of the rate function
under reversibility.

1 Introduction

Let X (t) be a time homogeneous Markov process with Polish state space S, and let
P (t; x; dy) be the transition function of X (t). For t 2 [0;1), de�ne Tt by

Ttf (x)
:
=

Z
S
f (y)P (t; x; dy) :

Then Tt is a contraction semigroup on the Banach space of bounded, Borel measurable
functions on S [6, Chapter 4.1]. We use L to denote the in�nitesimal generator of
Tt and D the domain of L (see [6, Chapter 1]). Hence for each bounded measurable
function f 2 D,

Lf (x) = lim
t#0

1

t

�Z
S
f (y)P (t; x; dy)� f (x)

�
:

�The authors thank a referee for useful comments and a correction.
yResearch supported in part by the Department of Energy (DE-SCOO02413), the National Sci-

ence Foundation (DMS-1008331), and the Army Research O¢ ce (W911NF-09-1-0155,W911NF-12-
1-0222).

zResearch supported in part by the Department of Energy (DE-SCOO02413).
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The empirical measure (or normalized occupation measure) up to time T of the
Markov process X (t) is de�ned by

�T (�)
:
=
1

T

Z T

0
�X(t) (�) dt: (1.1)

Let P (S) be the metric space of probability measures on S equipped with the Levy-
Prohorov metric, which is compatible with the topology of weak convergence. For
� 2 P (S), de�ne

I (�)
:
= � inf

u2D
u>0

Z
S

Lu
u
d�: (1.2)

It is easy to check that I thus de�ned is lower semicontinuous under the topology of
weak convergence. Consider the following regularity assumption.

Condition 1.1 There exists a probability measure � on S such that for t > 0 the
transition functions P (t; x; dy) have densities with respect to �, i.e.,

P (t; x; dy) = p (t; x; y)� (dy) : (1.3)

Under additional recurrence and transitivity conditions, Donsker and Varadhan
[2, 3] prove the following. For any open set O � P (S)

lim inf
T!1

1

T
logP (�T (�) 2 O) � � inf

�2O
I (�) ; (1.4)

and for any closed set C � P (S)

lim sup
T!1

1

T
logP (�T (�) 2 C) � � inf

�2C
I (�) : (1.5)

We refer to (1.4) as the large deviation lower bound and (1.5) as the large de-
viation upper bound. Under ergodicity, the empirical measure �T converges to the
invariant distribution of the Markov process X (t). The large deviation principle
characterizes this convergence through the associated rate function. While there are
many situations where an explicit formula for (1.2) would be useful, it is in general
di¢ cult to solve the variational problem. The main existing results on this issue are
for the self-adjoint case in the continuous time setting, see [2, 9, 11]. Speci�cally,
suppose there is a �-�nite measure ' on S, and that the densities in (1.3) satisfy the
following reversibility condition:

p (t; x; y) = p (t; y; x) almost everywhere ('� ') : (1.6)

Then Tt is self-adjoint. If we denote the closure of L by �L (see, e.g., [6, p. 16]) and
the domain of �L by D

�
�L
�
, then �L is self-adjoint and negative semide�nite (since Tt

is a contraction). We denote by (� �L)1=2 the canonical positive semide�nite square
root of � �L [10, Chapter 12]. Let �D1=2 be the domain of (� �L)

1=2. Donsker and
Varadhan [2, Theorem 5] show under certain conditions that I de�ned by (1.2) has
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the following properties: I (�) <1 if and only if �� ' and (d�=d')1=2 2 �D1=2, and
with f :

= d�=d' and g := f1=2,

I (�) =
(� �L)1=2g2 ; (1.7)

where k�k denotes the L2 norm with respect to '. Typically, ' is taken to be the
invariant distribution of the process.

It should be noted that this explicit formula does not apply to one of the simplest
Markov processes, namely, continuous time Markov jump processes with bounded
in�nitesimal generators. Let B (S) be the Borel �-algebra on S and let � (x;�) be
a transition kernel on S � B (S). Let B (S) denote the space of bounded Borel
measurable functions on S and let q 2 B (S) be nonnegative. Then

Lf (x) := q (x)
Z
S
(f (y)� f (x))� (x; dy) (1.8)

de�nes a bounded linear operator on B (S) and L is the generator of a Markov process
that can be constructed as follows. Let fXn; n 2 Ng be a Markov chain in S with
transition probability � (x;�), i.e.

P (Xn+1 2 �jX0; X1; : : : ; Xn) = � (Xn;�) (1.9)

for all � 2 B (S) and n 2 N. Let �1; �2; : : : be independent and exponentially distrib-
uted with mean 1, and independent of fXn; n 2 Ng. De�ne a sojourn time si for each
i = 1; 2; : : : by

q (Xi�1) si = �i: (1.10)

Then

X (t) = Xn for
nX
i=1

si � t <
n+1X
i=1

si

(with the convention
P0
i=1si = 0) de�nes a Markov process fX (t) ; t 2 [0;1)g with

in�nitesimal generator L, and we call this process a Markov jump process.
A very simple special case is as follows. Using the notation above, assume S =

[0; 1], q � 1 and for each x 2 [0; 1], � (x; �) is the uniform distribution on [0; 1]. The
in�nitesimal generator L de�ned in (1.8) reduces to

Lf (x) =
Z 1

0
f (y) dy � f (x) ;

which is clearly self-adjoint with respect to Lebesgue measure. If C is the collection
of all Dirac measures on S, then C is closed under the topology of weak convergence
on P (S). Hence a large deviation upper bound would imply

lim sup
T!1

1

T
logP (�T 2 C) � � inf

�2C
I (�) : (1.11)

3
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However, the probability that the very �rst exponential holding time is bigger than
T is exactly exp f�Tg, and when this happens, the empirical measure is a Dirac
measure located at some point that is uniformly distributed on [0; 1]. Hence

lim inf
T!1

1

T
logP (�T (�) 2 C) � lim inf

T!1

1

T
logP (�1 > T ) = �1:

In fact, we will prove later that the rate function for the empirical measure of this
Markov jump process never exceeds 1. However, if the upper bound held with the
function de�ned in (1.7), one would have I (�a) =1 for a 2 [0; 1], and by (1.11)

lim sup
T!1

1

T
logP (�T (�) 2 D) = �1;

which is impossible.
This example shows that this type of Markov jump process is not covered by

[2, 3]. In fact, the transition function P (t; x; dy) takes the form

P (t; x; dy) = e�t�x (dy) +
�
1� e�t

�
1[0;1] (y) dy;

which means that we cannot �nd a reference probability measure � on S such that
P (t; x; �) has a density with respect to � (�) for almost all x 2 S and t > 0, which is
a violation to Condition 1.1 used in [2, 3], and also violates the form of reversibility
needed for (1.7).

A condition such as Condition 1.1 holds naturally for Markov processes that
possess a �di¤usive� term in the dynamics, which is not the case for Markov jump
processes, and the form of the rate function given in (1.7) will not be valid for these
processes either. The purpose of the current paper is to establish a large deviation
principle for the empirical measures of reversible Markov jump processes, and to
provide an explicit formula for the rate function like the one given in (1.7). We
also show why the boundedness of the rate function results from the fact that tilting
of the exponential holding times with bounded relative entropy cost can be used
for target measures that are not absolutely continuous with respect to the invariant
distribution.

Finally we mention that [1] evaluates (1.2) for certain classes of measures when L
is the generator of a jump Markov process satisfying various conditions. However, it
does not present an expression for an arbitrary measure, and indeed in appears that
the authors are unaware that (1.7) is not the correct rate function for such processes,
or that the large deviation principle had not been established.

The paper is organized as follows. Section 2 presents our assumptions on the
process. In Section 3 we state the main result, Theorem 3.1. The proof of Theorem
3.1 is divided into two sections, Section 4 for the upper bound and Section 5 for
the lower bound. In the �nal section, we discuss the special feature of Markov jump
processes that leads to the boundedness of the rate function.

4
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2 Assumptions

Our �rst assumption is that the Polish state space S is compact. While compactness
is not needed, it lets us focus on the novel features of the problem. For standard
techniques to deal with the non-compact case see, e.g., [3].

A construction of Markov jump processes was given in the Introduction, and
we continue to use the notation introduced there. The jump intensity q in (1.8) is
assumed to be continuous on S, and there exist 0 < K1 � K2 <1 such that

K1 � q (x) � K2: (2.1)

Reversibility seems necessary to obtain an explicit formula for the rate function,
and we will make such an assumption. Recall that D is the domain of L.

Condition 2.1 L is self-adjoint (or reversible) under � in the following sense: for
any f; g 2 D Z

S
(Lf (x)) g (x)� (dx) =

Z
S
(Lg (x)) f (x)� (dx) : (2.2)

An equivalent condition for (2.2) to hold is the �detailed balance�condition, i.e.,
for �-a.e. x; y 2 S

q (x)� (x; dy)� (dx) = q (y)� (y; dx)� (dy) : (2.3)

Note that (2.3) directly implies
R
S (Lf (x))� (dx) = 0 for all f 2 D.

To ensure ergodicity of X (t), we need several conditions on the transition func-
tion � in (1.9). Recall that P (S) is the metric space of probability measures on S
equipped with Levy-Prohorov metric, which is compatible with the topology of weak
convergence.

Condition 2.2 � satis�es the Feller property. That is, � (x; �) : S 7�! P (S) is
continuous in x.

Remark 2.3 The Feller property and the compactness of S guarantee � has an in-
variant distribution [4, Proposition 8.3.4], which we denote by e�. The boundedness
of q enables us to de�ne a probability measure � according to

� (A)
:
=

R
A

1
q(x)e� (dx)R

S
1
q(x)e� (dx) : (2.4)

Since e� is invariant under �, i.e., e� (�) = RS � (x; �) e� (dx), we haveZ
S
(Lf (x))� (dx) = 1R

S
1
q(x)e� (dx)

Z
S

Z
S
[f (y)� f (x)]� (x; dy) e� (dx) = 0:

By Echeverria�s Theorem [6, Theorem 4.9.17], � is an invariant distribution of X (t).

5
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Condition 2.4 � satis�es the following transitivity condition. There exist positive
integers l0 and n0 such that for all x and � in S

1X
i=l0

1

2i
�(i) (x; dy)�

1X
j=n0

1

2j
�(j) (�; dy) ;

where �(k) denotes the k-step transition probability.

Remark 2.5 Under this condition, e� is the unique invariant distribution of � [4,
Lemma 8.6.2]. Thus � de�ned by (2.4) is the unique probability distribution that sat-
is�es

R
S (Lf (x))� (dx) = 0, and hence by [6, Theorem 4.9.17] is the unique invariant

distribution of X (t).

Condition 2.6 There exists an integer N and a positive real number c such that

�(N) (x; �) � ce� (�)
for all x 2 S.

Remark 2.7 This type of assumption is common in the large deviation analysis of
empirical measures. See e.g., [5, Hypothesis 1.1].

Condition 2.8 The support of � is S.

Remark 2.9 This condition guarantees that any probability measure � 2 P (S) can
be approximated by measures that are absolutely continuous with respect to �. Indeed,
given � > 0 let fxj ; Nj ; j = 1; : : : ; Jg be such that J < 1, xj 2 Nj 2 B (S), the Nj
are disjoint, [Jj=1Nj = S, �(Nj) > 0 and sup fd(xi; y) : y 2 Njg � � for j = 1; : : : ; J
(this can be done by an open covering argument). Given any � 2 P (S) and A 2 B (S)
let

���(A) =

JX
j=1

�(A \Nj)
�(Nj)

�(Nj):

Then ��� is absolutely continuous with respect to �. Since ���(Nj) = �(Nj) and
sup fd(xi; y) : y 2 Njg � �, ��� ! � in the weak topology as � ! 0.

Remark 2.10 Condition 2.8 excludes the existence of transient states. Although one
can obtain an LDP for X (t) that has transient states, one would end up with a rate
function that depends on the initial state.

3 A large deviation principle

3.1 De�nition of the rate function

In this subsection, we de�ne the rate function I. In later sections we prove that I
thus de�ned is the correct form of the large deviation rate function for the empirical

6
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measures of the Markov jump processes. All conditions stated in Section 2 will be
assumed throughout the rest of the paper. We wish to study the large deviation
principle for the empirical measures �T 2 P (S) de�ned by (1.1). Under compactness
of S and Condition 2.2, �T converges in distribution to an invariant distribution of
L. As pointed out in Remark 2.5, � is the unique invariant distribution of L, and
thus �T converges in distribution to �. Let H be the collection of all distributions
that are absolutely continuous with respect to �, i.e.

H
:
= f� 2 P (S) : � � �g : (3.1)

For � 2 H, and assuming that the integral is well de�ned, consider

�
Z
S
�1=2 (x)L

�
�1=2 (x)

�
� (dx) ;

where � = d�=d�. This is a rewriting of jj(� �L)1=2gjj2 in (1.7). By inserting the form
of L from (1.8), we obtain the candidate rate function

I (�) =

Z
S
q (x) � (dx)�

Z
S�S

�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx) : (3.2)

Note that by applying (2.3) and using the Cauchy-Schwartz inequality, one can
prove that I de�ned by (3.2) is nonnegative. Recall that K2 is the upper bound of q
as in (2.1), and thus I is bounded above by K2. In addition, it is straightforward to
show that I is convex on H.

We want to extend the de�nition of I to all measures in P (S). As pointed
out in Remark 2.9, H is dense in P (S) under the topology of weak convergence.
Hence we can extend the de�nition of I to all of P (S) via lower semicontinuous
regularization with respect to the topology of weak convergence. Thus if �n ! �
weakly and f�ng 2 H, lim infn!1 I (�n) � I (�), and equality holds for at least
one such sequence. This extension guarantees that the extended I is convex, lower
semicontinuous and bounded above by K2 on all of P (S). The compactness of S
and the lower semicontinuity of I ensure that I has compact level sets. Being a
nonnegative, lower semicontinuous function with compact level sets, I indeed is a
valid large deviation rate function.

We have �nished the de�nition of the rate function I, and are now ready to state
the large deviation principle.

3.2 A large deviation principle

Our main result is the following:

Theorem 3.1 Let X (t) be a Markov jump process satisfying all the assumptions in
Section 2. Let I be de�ned as in Section 3.1. Then the large deviation bounds (1.4)
and (1.5) hold.
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To prove Theorem 3.1, it su¢ ces to show the equivalent Laplace principle [4,
Theorem 1.2.3]. Speci�cally, we establish that for any bounded continuous function
F : P (S)! R

lim
T!1

� 1
T
logE [exp f�TF (�T )g] = inf

�2P(S)
[F (�) + I (�)] : (3.3)

By adding a constant to both sides of (3.3) we can assume F � 0 and do that for the
rest of the paper. The proof is based on a weak convergence approach and is split
into two parts: a Laplace upper bound and a Laplace lower bound.

Relative entropy plays a key role in the proof, and we hence state the de�nition
and a few important properties. Details can be found in [4].

De�nition 1 Let (V;A) be a measurable space. For # 2 P (V), the relative entropy
R (� k#) is a mapping from P (V) into the extended real numbers. It is de�ned by

R ( k#) :=
Z
V

�
log

d

d#

�
d

when  2 P (V) is absolutely continuous with respect to # and log d=d# is integrable
with respect to . Otherwise we set R ( k#) :=1.

If V is a Polish space and A the associated �-algebra, then R (� k�) is nonnegative,
jointly convex and jointly lower semicontinuous (with respect to the weak topology
on P (V)2). We state the following two properties of relative entropy.

Lemma 3.2 (Variational formula) Let (V;A) be a measurable space, k a bounded
measurable function mapping V into R, and # a probability measure on V. The
following conclusions hold.

(a) We have the variational formula

� log
Z
V
e�kd# = inf

2P(V)

�
R ( k#) +

Z
V
kd

�
: (3.4)

(b) The in�mum in (3.4) is attained uniquely at 0 de�ned by

d0
d#

(x)
:
= e�k(x)=

Z
V
e�kd#:

Theorem 3.3 (Chain rule) Let X and Y be Polish spaces and � and  probability
measures on X � Y. We denote by [�]1 and []1 the �rst marginals of � and  and
by � (dyjx) and  (dyjx) the stochastic kernels on Y given X for which we have the
decompositions

� (dx� dy) = [�]1 (dx)
 � (dyjdx) and  (dx� dy) = []1 (dx)
  (dyjdx) :

Then the function mapping x 2 X ! R (� (�jx) k (�jx)) is measurable and

R (� k ) = R ([�]1 k[]1 ) +
Z
X
R (� (�jx) k (�jx)) [�]1 (dx) :

We devote the next two sections to proving the Laplace upper bound and the
Laplace lower bound, respectively.
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4 Proof of the Laplace upper bound

In this section, we prove the Laplace upper bound part of (3.3), i.e.

lim inf
T!1

� 1
T
logE [exp f�TF (�T )g] � inf

�2P(S)
[F (�) + I (�)] : (4.1)

Recalling the construction of X(t) in the Introduction, we de�ne a random integer
RT as the index when the total �waiting time��rst exceeds T , i.e.

RT�1X
i=1

si � T <
RTX
i=1

si: (4.2)

Then the empirical measure �T can be written as

�T (�) =
1

T

Z T

0
�X(t) (�) dt

=
1

T

"
RT�1X
i=1

�Xi�1 (�) si + �XRT�1 (�)
 
T �

RT�1X
i=1

si

!#

=
1

T

"
RT�1X
i=1

�Xi�1 (�)
�i

q (Xi�1)
+ �XRT�1 (�)

 
T �

RT�1X
i=1

�i
q (Xi�1)

!#
: (4.3)

The proof of (4.1) will be partitioned into two cases: RT =T > C and 0 � RT =T � C,
where C will be sent to 1 after sending T !1.

4.1 The case RT=T > C

Let F : P(S)! R be nonnegative and continuous. Then since F � 0,

� 1
T
logE

h
1f(C;1)g(RT =T )e

�TF (�T )
i
� � 1

T
logP

8<:
bTCc+1X
i=1

si � T

9=;
= � 1

T
logP

8<:
bTCc+1X
i=1

�i
q (Xi�1)

� T

9=;
� � 1

T
logP

8<:
bTCc+1X
i=1

�i � K2T

9=; :
Using Chebyshev�s inequality, for any � 2 (0;1)

P

8<:
bTCc+1X
i=1

�i � K2T

9=; = P
n
e��

PbTCc+1
i=1 �i � e��K2T

o
� e�K2TE

h
e��

PbTCc+1
i=1 �i

i
= e�K2T e(bTCc+1) log

1
1+� :
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For the last equality we have used that if � is exponentially distributed with mean 1
then Eea� = 1= (1� a) for any a 2 (�1; 1). Combining the last two inequalities,

lim inf
T!1

� 1

T
logE

�
1f(C;1)g(RT =T ) � expf�TF (�T )g

�
� sup
�2(0;1)

[�K2�+ C log (1 + �)]

= �C + C logC +K2 � C logK2:

Note that �C + C logC +K2 � C logK2 !1 as C !1.

4.2 The case 0 � RT=T � C
4.2.1 A stochastic control representation

In this case we adapt a standard weak convergence argument, see [4] for details.
Speci�cally, we �rst establish a stochastic control representation for the left hand
side of (3.3) and then obtain a lower bound for the limit as T ! 1. In the rep-
resentation, all distributions can be perturbed from their original form, but such
a perturbation pays a relative entropy cost. We distinguish the new distributions
and random variables by an overbar. In the following, the barred quantities are
constructed analogously to their unbarred counterparts. Hence ��i and �Xi are chosen
recursively according to stochastic kernels ��i (�) and ��i (�), i.e., ��i (�) and ��i (�) are con-
ditional distributions that can depend on the whole past. Speci�cally, ��i (�) depends
on
�
�X0; ��1; �X1; ��2; : : : ; �Xi�1

	
and ��i (�) depends on

�
�X0; ��1; �X1; ��2 : : : ; �Xi�1; ��i

	
; �si is

de�ned by (1.10) using �Xi and ��i; �RT is de�ned by (4.2) using �si; and ��T is de�ned by
(4.3) using �Xi, ��i and �RT . It will be su¢ cient to consider any deterministic sequence
frT g such that 0 � rT =T � C, and rT =T ! A for some A 2 [0; C] as T ! 1. We
restrict consideration to controlled processes such that �RT = rT by placing an in�nite
cost penalty on controls which lead to any other outcome with positive probability.
Let 1 (A) denote the indicator function of a set A, and recall that our convention is
0 � 1 = 0. By applying [4, Proposition 4.5.1] and Theorem 3.3 the following is valid:

� 1

T
logE [exp f�TF (�T )� T � 1 � 1 (rT 6= RT )g] (4.4)

= � 1
T
logE

"
exp

(
�TF (�T )� T � 1 � 1

 (
rT�1X
i=1

si � T <
rTX
i=1

si

)c!)#

= inf E

"
F (��T ) +1 � 1

 (
rT�1X
i=1

�si � T <
rTX
i=1

�si

)c!
+
1

T

rTX
i=1

[R (��i�1 k�) +R (��i k� )]
#

(4.5)

where the in�mum is taken over all control measures f��i; ��ig. Since in Section 5 we
will prove a similar but more involved representation formula, Lemma 5.1, we omit
the proof of this representation. Due to the restriction �RT = rT , one can write ��T as
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��T (�) =
1

T

"
rT�1X
i=1

� �Xi�1 (�)
��i

q
�
�Xi�1

� + � �XrT�1 (�)
 
T �

rT�1X
i=1

��i

q
�
�Xi�1

�!# : (4.6)

In the following proof, we repeatedly extract further subsequences of T . To keep
the notation concise, we abuse notation and use T to denote all subsequences. Note
also that in proving a lower bound for (4.4) it su¢ ces to consider a subsequence of
T such that

sup
T
� 1
T
logE [exp f�TF (�T )� T � 1 � 1 (rT 6= RT )g] <1: (4.7)

We assume this condition for the rest of this subsection.
The relative entropy cost in (4.5) includes two parts, RE1T

:
= 1

T

PrT
i=1R (��i�1 k�)

and RE2T
:
= 1

T

PrT
i=1R (��i k� ). We will prove that for any sequence of controls f��i; ��ig

in (4.5)
lim inf
T!1

E
�
F (��T ) +RE

1
T +RE

2
T

�
� inf
�2P(S)

[F (�) + I (�)] : (4.8)

Toward this end, it is enough to show that along any subsequence of T such that
rT =T ! A, we can extract a further subsequence along which (4.8) holds. In addition,
it su¢ ces to consider only functions F that besides being nonnegative, are also lower
semicontinuous and convex. This restriction is valid since I is convex and lower
semicontinuous, and follows a standard argument in the large deviation literature.
The interested reader can �nd the details in [8].

In light of (4.5) and (4.7) we assume without loss of generality

sup
T
E
�
F (��T ) +RE

1
T +RE

2
T

�
<1: (4.9)

Since the proof of (4.8) is lengthy, we analyze each term on the left hand side of (4.8)
separately in the following subsections.

4.2.2 The term RE1T

The cost RE1T comes from distorting the dynamics of the embedded Markov chain,
and indeed the analysis gives a very similar conclusion to that of an ordinary Markov
chain ([4, Chapter 8]). For any probability measure � on S�S we will use notations
[�]1 and [�]2 to denote the �rst and second marginals of �. We have the following
result for RE1T .

Lemma 4.1 Consider any sequence of controls f��i; ��ig in (4.5) such that (4.9) holds.
Along any subsequence of T satisfying rT =T ! A, de�ne a sequence of random prob-
ability measures on S � S via

�T (dx; dy)
:
=
1

rT

rTX
i=1

� �Xi�1 (dx) ��i�1 (dy) :
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Then one can extract a further subsequence such that E�T converges in distribution
to a probability measure ~� on S � S, and

lim inf
T!1

E
�
RE1T

�
� AR (~� k[~�]1 
 �) :

Furthermore, if A > 0 then ~� satis�es

[~�]1 = [~�]2 : (4.10)

Proof. By the chain rule (Theorem 3.3) and the joint convexity of relative entropy

E
�
RE1T

�
= E

"
1

T

rTX
i=1

R (��i�1 k�)
#

= E

"
1

T

rTX
i=1

R
�
� �Xi�1 
 ��i�1

� �Xi�1 
 ��
#

� E
hrT
T
R (�T k[�T ]1 
 �)

i
� rT
T
R (E�T k[E�T ]1 
 �) :

Since S � S is compact, for any subsequence of T there exists a further subsequence
along which E�T converges weakly to a probability measure ~�. Under the Feller
property of � (Condition 2.2), [E�T ]1 
 � converges weakly to [~�]1 
 �. The lower
semicontinuity of relative entropy then implies

lim inf
T!1

E
�
RE1T

�
� lim inf

T!1

rT
T
R (E�T k[E�T ]1 
 �) � AR (~� k[~�]1 
 �) :

This �nishes the �rst part of Lemma 4.1. For the second part, we employ a
standard martingale argument. Let Fi be the �-algebra generated by the random
variables

��
�X0; : : : ; �Xi

�
; (��1; : : : ; ��i)

	
. Thus Fi is a sequence of increasing �-algebra�s

and, since ��i selects the conditional distribution of �Xi, for any bounded continuous
function f on S

E

��
f
�
�Xi
�
�
Z
S
f (y) ��i (dy)

�����Fi�1� = 0:
Hence for integers 0 � i < k � rT � 1

E

��
f
�
�Xi
�
�
Z
S
f (y) ��i (dy)

��
f
�
�Xk
�
�
Z
S
f (y) ��k (dy)

��
= 0;
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and thus for any bounded continuous function f on S

E

�Z
S�S

f (x)�T (dx; dy)�
Z
S�S

f (y)�T (dx; dy)

�2
= E

"
1

rT

rTX
i=1

f
�
�Xi�1

�
� 1

rT

rTX
i=1

Z
S
f (y) ��i�1 (dy)

#2

� 1

r2T

rTX
i=1

E

�
f
�
�Xi�1

�
�
Z
S
f (y) ��i�1 (dy)

�2
� 4

rT
kfk21 :

Since 0 < A = limT!1 rT =T , we have rT =T � A=2 for all T large enough. Using
Chebyshev�s inequality and the last display we conclude that [�T ]1� [�T ]2 converges
to 0 in probability as T ! 1, and therefore [~�]1 = [~�]2 with probability 1. This
concludes the second part of Lemma 4.1.

4.2.3 The term RE2T

We now turn to the second cost RE2T . This cost comes from distorting the exponential
sojourn times. We introduce a function ` which is closely related to the relative
entropy of exponential distributions: ` (x) := x log x� x+ 1 for any x � 0.

Lemma 4.2 Given any sequence of controls f��i; ��ig, �x a subsequence of T for which
the conclusions in Lemma 4.1 holds. Then we can extract a further subsequence along
which

lim inf
T!1

E
�
RE2T

�
�
Z
S�R+

` (u) ~� (dx; du) :

Here ~� is a �nite measure on S � R+ and is related to ~� in Lemma 4.1 byZ
R+
u~� (dx; du) = A [~�]1 (dx) : (4.11)

Before proving this lemma, we de�ne g : R+ ! R by g (b) := � log b+ b� 1. The
functions g and ` are related by

g (x) = x` (1=x) ;

and g has the following property.

Lemma 4.3 Let � be an exponential distribution with mean 1. Then

inf

�
R ( k� ) :

Z
R+
u (du) = b

�
= g (b) : (4.12)

13

16



Proof. Let �b be the exponential distribution with mean b, i.e.,

�b (du) =
1

b
e�

u
b du:

Then d�b
d� (u) =

1
be
(1� 1

b )u for u > 0. Picking any  such that R ( k� ) < 1 andR
R+ u (du) = b,

R ( k� ) =
Z
R+
log

�
d

d�

�
 (du)

=

Z
R+
log

�
d

d�b

�
 (du) +

Z
R+
log

�
d�b
d�

�
 (du)

= R ( k�b ) +
Z
R+

�
� log b+

�
1� 1

b

�
u

�
 (du)

= R ( k�b ) + g (b)
� g (b)

and the in�mum in (4.12) is achieved when R ( k�b ) = 0, i.e.,  = �b.

Proof of Lemma 4.2. Lemma 4.3 guarantees that

RE2T �
1

T

rTX
i=1

g

�Z
u��i (du)

�
: (4.13)

Recall the de�nition of Fi as the �-algebra generated by the controlled process up to
time i. Since ��i selects the conditional distribution of ��i,

E [��ijFi�1] =
Z
u��i (du) :

De�ne �mi
:
=
R
u��i (du), for i = 1; : : : ; rT � 1. The de�nition of �mrT requires more

work. Recalling the de�nition of �RT by the equation analogous to (4.2) and the
restriction that �RT = rT ,

T �
rT�1X
i=1

��i

q
�
�Xi�1

� � ��rT
q
�
�XrT�1

� :
Multiplying both sides by q

�
�XrT�1

�
and taking expectation conditioned on FrT�1,

q
�
�XrT�1

� 
T �

rT�1X
i=1

��i

q
�
�Xi�1

�! � E [��rT jFrT�1] = Z u��rT (du) :

De�ne

��T
:
= q

�
�XrT�1

� 
T �

rT�1X
i=1

��i

q
�
�Xi�1

�! ; (4.14)
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and de�ne �mrT by

�mrT
:
=

8<:
R
u��rT (du) if ��T �

R
u��rT (du) < 1

1 if ��T � 1 �
R
u��rT (du)

��T if 1 < ��T �
R
u��rT (du)

(4.15)

i.e., �mrT is the median of the triplet
�
��T ;

R
u��rT (du) ; 1

�
. Since g is increasing on

(1;1), we have g
�R
u��rT (du)

�
� g ( �mrT ) in all three cases. Thus by (4.13),

RE2T �
1

T

rTX
i=1

g

�Z
u��i (du)

�
� 1

T

rTX
i=1

g ( �mi) : (4.16)

Next consider the measure on S � R+ de�ned by

�T (dx; du)
:
=
1

T

rTX
i=1

� �Xi�1 (dx) �( �mi)
�1 (du) �mi: (4.17)

The total mass of E�T is

E�T (S � R+) =
1

T

rTX
i=1

E [ �mi] :

According to (4.9) and the assumption that F � 0, we have

sup
T
E
�
RE2T

�
<1: (4.18)

By (4.16) supT E [
PrT
i=1 g ( �mi) =T ] < 1. We also have by a straightforward calcula-

tion that x � max f50; 10g (x) =9g. Using this and the fact that rT =T � C we have
supT E [

PrT
i=1 �mi=T ] < 1, i.e., the total mass of E�T has a bound uniform in T .

Thus when viewed as a sequence of measures on the compact space S � [0;1], E�T
is tight due to the uniform boundedness of the total mass. We denote the weak limit
by ~�, which is a �nite measure. Since the function ` is nonnegative and continuous,

lim inf
T!1

E
�
RE2T

�
� lim inf

T!1
E

"
1

T

rTX
i=1

g ( �mi)

#

= lim inf
T!1

E

�Z
S�R+

` (u) �T (dx; du)

�
= lim inf

T!1

Z
S�R+

` (u)E�T (dx; du) (4.19)

�
Z
S�R+

` (u) ~� (dx; du) :

We next explore the relation between ~� and ~�. In order to establish (4.11), it
su¢ ces to show that for any bounded continuous function f on SZ

S�R+
uf (x) ~� (dx; du) = A

Z
S
f (x) [~�]1 (dx) :
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By the de�nitions of �T and �TZ
S�R+

uf (x)E�T (dx; du) =
rT
T

Z
S
f (x) [E�T ]1 (dx) : (4.20)

Then (4.18) and (4.19) imply there is a uniform upper bound onZ
R+
` (u)

Z
S
f (x)E�T (dx; du) :

If we consider
R
S f (x)E�T (dx; du) as a sequence of measures on R+ with bounded

total mass, then
R
S f (x)E�T (dx; du) converges weakly to

R
S f (x)

~� (dx; du). Since `
is superlinear, [4, Theorem A.3.19] implies that

lim
T!1

Z
S�R+

uf (x)E�T (dx; du) =

Z
S�R+

uf (x) ~� (dx; du) :

Using

lim
T!1

rT
T

Z
S
f (x) [E�T ]1 (dx) = A

Z
S
f (x) [~�]1 (dx)

and (4.20) we arrive at (4.11).

4.2.4 The term E��T

Lemma 4.4 Given any sequence of controls f��i; ��ig, �x a subsequence of T for which
the conclusions in Lemma 4.2 hold. Then we can extract a further subsequence along
which

lim inf
T!1

E [F (��T )] � F (~�)

for some probability measure ~� on S, which is related to ~� in Lemma 4.2 by

q (x) ~� (dx) = [~�]1 (dx) : (4.21)

Proof. As a sequence of probability measures on the compact space S, we can always
extract a subsequence of T such that E��T converges weakly to a probability measure
on S which we denote by ~�. The convexity and lower semicontinuity of F imply that

lim inf
T!1

E [F (��T )] � lim inf
T!1

F (E��T ) � F (~�) :
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By the de�nitions of ��T in (4.6) and ��T in (4.14)

q (x)E��T (dx)

=
q (x)

T
E

"
rT�1X
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

� + � �XrT�1 (dx)
 
T �

rT�1X
i=1

��i

q
�
�Xi�1

�!#

=
1

T
E

"
rT�1X
i=1

� �Xi�1 (dx) ��i + � �XrT�1
(dx) ��T

#

=
1

T

 
rT�1X
i=1

E
h
E
h
� �Xi�1 (dx) ��ijFi�1

ii
+ E

h
� �XrT�1

(dx) ��T

i!

=
1

T

 
rT�1X
i=1

E
h
� �Xi�1 (dx) �mi

i
+ E

h
� �XrT�1

(dx) ��T

i!
:

Recalling the de�nition of �T in (4.17), we have

[E�T ]1 (dx) =
1

T

rTX
i=1

E
h
� �Xi�1 (dx) �mi

i
:

This implies the total variation bound

kq (x)E��T (dx)� [E�T ]1 (dx)kTV �
1

T
E
�� ��T � �mrT

�� :
Recalling the de�nition of �mrT in (4.15) we conclude that

kq (x)E��T (dx)� [E�T ]1 (dx)kTV �
1

T
:

By taking limits we arrive at (4.21).

Lemma 4.1, Lemma 4.2 and Lemma 4.4 together imply for a sequence of controls
f��i; ��ig satisfying (4.5), along any subsequence of T such that rT =T ! A, we can
extract a further subsequence along which

lim inf
T!1

E
�
F (��T ) +RE

1
T +RE

2
T

�
� F (~�) +AR (~� k[~�]1 
 �) +

Z
S�R+

` (u) ~� (dx; du)

(4.22)
where ~�, ~� and ~� satisfy the constraints (4.11), (4.21), and (4.10) if A > 0.

Recall that our goal is to prove (4.8). Hence we need to establish the relationship
between the right hand side of (4.22) and the rate function I de�ned in Section 3.1.

4.2.5 Properties of the rate function I

We prove the following lemma, for which we adopt the convention 0 � 1 :
= 0. This is

in fact the key link, showing that the rate function that is naturally obtained by the
weak convergence analysis used to prove the upper bound in fact equals I for suitable
measures, and also indicating how to construct controls to prove the lower bound for
this same collection of measures. Note that the constraints appearing in the lemma
hold for the subsequence appearing in (4.22) due to Lemmas 4.1, 4.2 and 4.4.
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Lemma 4.5 Let I (�) be de�ned by (3.2). Suppose that � � �, that � and � satisfy
the constraints

q (x) � (dx) = [�]1 (dx) and
Z
R+
u� (dx; du) = A [�]1 (dx) ; (4.23)

and that when A > 0 the constraint [�]1 = [�]2 is also true. Then

I (�) � AR (� k[�]1 
 �) +
Z
S�R+

` (u) � (dx; du) : (4.24)

Moreover,

I (�) = inf

�
AR (� k[�]1 
 �) +

Z
S�R+

` (u) � (dx; du)

�
where the in�mum is over all possible choices of A � 0, � and � satisfying these
constraints.

The proof of this lemma is detailed. The reason we present it here instead of in
an appendix is the previously mentioned fact that the construction of A, � and �
that minimize the right hand side of (4.24) indicates how to hit target measures �
that are absolutely continuous with respect to the invariant measure in the proof of
the Laplace lower bound.

Proof. We �rst prove the inequality (4.24). If the right hand side of (4.24) is 1,
there is nothing to prove. Hence we assume it is �nite. First assume A > 0, in which
case R (� k[�]1 
 �) <1. De�ne

Q
:
=

Z
S
q (x)� (dx) ; (4.25)

so that by (2.4) e� (dx) = q (x)� (dx) =Q: (4.26)

Since e� is invariant under �, by [4, Lemma 8.6.2] [�]1 � e�. By (2.1) q is bounded from
below, and hence [�]1 � �. Recall that the de�nition of I in (3.2) uses � = d�=d�.
De�ne � :

= fx 2 S : � (x) = 0g. By (4.23)

[�]1 (dx) =

R
R+ u�2j1 (dujx)

A
[�]1 (dx)

=

R
R+ u�2j1 (dujx)

A
q (x) � (dx)

=

R
R+ u�2j1 (dujx)

A
q (x) � (x)� (dx) (4.27)

where for a measure � on S � R+, �2j1 denotes the regular conditional distribution
on the second argument given the �rst. Thus [�]1 (�) = 0. Now suppose thatZ

S�S
�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx) = 0:
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Then for �-a.e. x 2 Sn�, � (x;�) = 1, and hence (�1 
 �)[(Sn�) � �] = 1. On
the other hand, � ((Sn�)��) = 0 due to [�]1 = [�]2. This violates the fact that
R (� k[�]1 
 �) <1. We conclude thatZ

S�S
�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx) > 0:

Lemma 3.2 implies that

� log
Z
S�S

�1=2 (x) �1=2 (y)� (x; dy) e� (dx)
= � log

Z
S�S

e
1
2
[log �(x)+log �(y)]� (x; dy) e� (dx)

� R (� ke� 
 �)� 1
2

Z
S�S

[log � (x) + log � (y)]� (dx; dy) : (4.28)

Strictly speaking, the inequality above does not fall into the framework of Lemma 3.2
because log � is not bounded. However, if one goes through the proof of this lemma
[4, Proposition 1.4.2], then the above inequality is true as long as the right hand side
is not of the form 1�1. Towards this end, it su¢ ces to prove

1

2

Z
S�S

[log � (x) + log � (y)]� (dx; dy) =

Z
S
log � (x) [�]1 (dx) <1: (4.29)

In the appendix we will prove [this being the only place where Condition 2.6 is used]
that

R ([�]1 ke� ) <1: (4.30)

For now, we assume this is true. Using (4.25), (4.26), and (4.27) to evaluate the
relative entropy,

1 > R ([�]1 ke� ) = Z
S
log

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx) +

Z
S
log � (x) [�]1 (dx) + log

Q

A
:

(4.31)
We know from (2.1) that Q � K1. Also, by (4.23) and the nonnegativity of `Z

S
log

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx)

=
1

A

Z
S

�Z
R+
u�2j1 (dujx)

�
log

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx)

=
1

A

Z
S
`

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx) +

1

A

Z
S�R+

u� (dx; du)� 1

A

Z
S
[�]1 (dx)

=
1

A

Z
S
`

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx) +

Z
S
[�]1 (dx)�

1

A

Z
S
q (x) � (dx) (4.32)

� 1� 1

A
K2:
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the second constraint in (4.23) is used for the �rst equality; the de�nition of ` gives
the second equality; both parts of (4.23) assure the third equality; �nally the non-
negativity of ` is used. Thus rearranging (4.31) gives (4.29).

The chain rule of relative entropy gives

R (� ke� 
 �)� 1
2

Z
S�S

[log � (x) + log � (y)]� (dx; dy)

= R ([�]1 ke� ) + Z
S
R
�
�2j1 k�

�
[�]1 (dx)�

Z
S
log � (x) [�]1 (dx)

= R ([�]1 ke� ) +R (� k[�]1 
 �)� Z
S
log � (x) [�]1 (dx) : (4.33)

By (4.31) and (4.32) and the convexity of `

R ([�]1 ke� )� Z
S
log � (x) [�]1 (dx)

=

Z
S
log

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx) + log

Q

A

=
1

A

Z
S
`

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx) +

Z
S
[�]1 (dx)�

1

A

Z
S
q (x) � (dx) + log

Q

A

� 1

A

Z
S�R+

` (u) � (dx; du) + 1� 1

A

Z
S
q (x) � (dx) + log

Q

A
: (4.34)

In summary (4.28), (4.33) and (4.34) imply

� log
Z
S�S

�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx)

= � log
Z
S�S

�1=2 (x) �1=2 (y)� (x; dy) e� (dx)� logQ
� R (� k[�]1 
 �) +

1

A

Z
S�R+

` (u) � (dx; du) + 1� 1

A

Z
S
q (x) � (dx) + log

1

A
:

Thus

�
Z
S�S

�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx)

� � exp
�
�
�
R (� k[�]1 
 �) +

1

A

Z
S�R+

` (u) � (dx; du) + 1� 1

A

Z
S
q (x) � (dx) + log

1

A

��
:

(4.24) then follows from the fact that �e�r � ar + a log a � a for any r 2 R and
a 2 R+ by taking a = A and

r = R (� k[�]1 
 �) +
1

A

Z
S�R+

` (u) � (dx; du) + 1� 1

A

Z
S
q (x) � (dx) + log

1

A
:
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For the case when A = 0, (4.23) implies that
R
R+ u� (dx; du) = 0, which means thatR

R+ u�2j1 (dujx) = 0 [�]1-a.e. Hence by the convexity of ` and q (x) � (dx) = [�]1 (dx)Z
S�R+

` (u) � (dx; du) �
Z
S
`

�Z
R+
u�2j1 (dujx)

�
[�]1 (dx)

=

Z
S
[�]1 (dx)

=

Z
S
q (x) � (dx)

�
Z
S
q (x) � (dx)�

Z
S�S

�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx)

= I (�) :

Thus (4.24) also holds in this case, and completes the proof of the �rst part of Lemma
4.5.

We now turn to the second part of Lemma 4.5. The de�nitions and constructions
used here will also be used to construct what are essentially optimal controls to
prove the reverse inequality in the next section, and indeed the particular forms of
the de�nitions are suggested by that use. In particular, A�(x) will correspond to a
dilation of the mean for the exponential random variables. In light of the second part
of Lemma 3.2, we de�ne � by

d�

d (e� 
 �) (x; y) := �1=2 (x) �1=2 (y)
�Z

S�S
�1=2 (x) �1=2 (y) (e� 
 �) (dx; dy) : (4.35)

Note that by the Cauchy-Schwartz inequality, the detailed balance condition (2.3)
and the relation between � and e� (see (2.4)) implyZ

S�S
�1=2 (x) �1=2 (y) (e� 
 �) (dx; dy) � Z

S�S
� (x)� (x; dy) e� (dx) � K2

Q
:

Hence � is well de�ned and [�]1 = [�]2. Then Lemma 3.2 implies that

� log
Z
S�S

�1=2 (x) �1=2 (y)� (x; dy) e� (dx) = R (� ke� 
 �)� Z
S
log � (x) [�]1 (dx) :

(4.36)
If R (� ke� 
 �) =1 or �

R
S log � (x) [�]1 (dx) =1, the last display impliesZ

S�S
�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx) = 0:

By letting A :
= 0 and � (dx; du) := q (x) � (dx) �0 (du), then � and � satisfy (4.23) and

AR (� k[�]1 
 �) +
Z
S�R+

` (u) � (dx; du) =

Z
S
q (x) � (dx) = I (�) :
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Next assume R (� ke� 
 �) <1 and �
R
S log � (x) [�]1 (dx) <1. De�ne A by

A
:
= exp

�
�
�
R (� ke� 
 �)� Z

S
log � (x) [�]1 (dx)� logQ

��
: (4.37)

De�ne the measure
� (dx)

:
= q (x) � (x)� (dx) ; (4.38)

and
�
:
= d [�]1 =d�: (4.39)

Then for any x 2 Sn� (recall � = fx 2 S : �(x) = 0g)

� (x) =
d [�]1
d�

(x) =
1

Q� (x)

d [�]1
de� (x) :

In additionZ
S
� (x) log � (x) � (dx) =

Z
S
log � (x) [�]1 (dx)

= R ([�]1 ke� )� Z
S
log � (x) [�]1 (dx)� logQ: (4.40)

De�ne

b (x)
:
=

�
0 for x 2 �

A� (x) for x =2 � (4.41)

and
� (dx; du)

:
= q (x) � (dx) �b(x) (du) : (4.42)

Then � satis�es the �rst part of (4.23). To see that the second part of (4.23) is
satis�ed, note that

[�]1 (�) = 0 =

Z
��R+

u� (dx; du)

and Z
R+
u� (dx; du) = b (x) q (x) � (dx)

= A� (x) q (x) � (x)� (dx)

= A [�]1 (dx) :
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By using the de�nitions we arrive at the following, each line of which is explained
below:

AR (� k[�]1 
 �) +
Z
S�R+

` (u) � (dx; du)

= AR (� k[�]1 
 �) +
Z
S
` (b (x)) q (x) � (dx)

= AR (� k[�]1 
 �) +
Z
�
q (x) � (dx) +

Z
Sn�

` (b (x)) � (dx)

= AR (� k[�]1 
 �) +
Z
S
q (x) � (dx) +A logA�A+A

Z
S
� (x) log � (x) � (dx)

=

Z
S
q (x) � (dx) +A logA�A+A

�
R (� ke� 
 �)� Z

S
log � (x) [�]1 (dx)� logQ

�
=

Z
S
q (x) � (dx)�A:

The �rst equality uses (4.42) and the second uses (4.41). The third uses (4.41) again,
expands `, and uses � :

= d [�]1 =d� and � (�) = � (�) = 0. Equality four then uses
(4.40) and the �fth follows from (4.37). Note that (4.36) and (2.4) imply

A =

Z
S�S

�1=2 (x) �1=2 (y) q (x)� (x; dy)� (dx) : (4.43)

Hence we obtain

AR (� k[�]1 
 �) +
Z
S
` (u) � (dx; du) = I (�) :

The representation formula (4.4), the lower bound (4.22) and Lemma 4.5 together
give

lim inf
T!1

� 1
T
logE

�
exp

�
�TF (�T )� T � 1 �

�
1frT =Tgc (RT =T )

�	�
(4.44)

� inf
�2P(S)

[F (�) + I (�)] :

4.3 Combining the cases

In the last section, we showed that (4.44) is valid for any sequence frT g such that
rT =T ! A 2 [0; C]. An argument by contradiction shows that the bound is uniform
in A. Thus

lim inf
T!1

� 1
T
log

8<:
bTCcX
rT=1

E
�
exp

�
�TF (�T )� T � 1 �

�
1frT =Tgc (RT =T )

�	�9=;
� lim inf

T!1
� 1
T
log

8<:TC �
bTCc_
rT=1

E
�
exp

�
�TF (�T )� T � 1 �

�
1frT =Tgc (RT =T )

�	�9=;
� inf
�2P(S)

[F (�) + I (�)] :
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We now partition E [exp f�TF (�T )g] according to the two cases to obtain the overall
lower bound

lim inf
T!1

� 1

T
logE [exp f�TF (�T )g]

� min
�
inf

�2P(S)
[F (�) + I (�)] ; [�C + C logC +K2 � C logK2]

�
Letting C !1 we have the desired Laplace upper bound

lim inf
T!1

� 1
T
logE [exp f�TF (�T )g] � inf

�2P(S)
[F (�) + I (�)] : (4.45)

5 Proof of Laplace lower bound

We turn to the proof of the reverse inequality

lim sup
T!1

� 1
T
logE [exp f�TF (�T )g] � inf

�2P(S)
[F (�) + I (�)] : (5.1)

Let F be a nonnegative bounded and continuous function. Fix an arbitrary " > 0
and choose � such that

F (�) + I (�) � inf
�2P(S)

[F (�) + I (�)] + ": (5.2)

As pointed out in Remark 2.9, H de�ned in (3.1) is dense in P (S). Since I was
extended from H to P (S) via lower semicontinuous regularization, we can assume
without loss of generality that � � �. De�ne � :

= d�=d�. We now argue we can
further assume there exists � > 0 such that

� � � (x) � 1

�
(5.3)

for all x 2 S. If �� := (1� �) � + �� then d��=d� � �, and the continuity of F and
the convexity of I imply that the di¤erence between F

�
��
�
+ I

�
��
�
and F (�)+ I (�)

can be made arbitrarily small.
Thus we can assume � is uniformly bounded from below away from zero. Let

n 2 N, and de�ne

�n (dx)
:
= � (x) 1f�(x)�ng� (dx) +

� (fx : � (x) > ng)
� (fx : � (x) > ng)1f�(x)>ng� (dx) :

Then d�n=d� � [� (fx : � (x) > ng) =� (fx : � (x) > ng)] _ n, and since � � � implies
� (fx : � (x) > ng)! 0, �n converges weakly to �. It then follows from the continuity
of F and the de�nition of I and convexity of � ! ��1=2 that we can choose � satisfying
(5.2) with 2" replacing " and also (5.3). Hence we assume � satis�es (5.2) and (5.3).
Furthermore by Lusin�s Theorem [7, Theorem 7.10], we can also assume that � is
continuous.
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The proof of the lower bound will use the following representation. The in�mum
in the representation is taken over all control measures f��i; ��ig, and the properties
of such measures and how ��T and �RT are constructed from them were discussed
immediately above the similar representation (4.4). The proof of the lemma is given
in the appendix.

Lemma 5.1 Let F : P (S)! R be bounded and continuous. Then

� 1
T
logE [exp f�TF (�T )g] = inf E

24F (��T ) + 1

T

�RTX
i=1

(R (��i�1 k�) +R (��i k� ))

35
where the in�mum is taken over all control measures f��i; ��ig :

Suppose that given any measure � 2 P (S) satisfying (5.2) and (5.3), one can con-
struct ��i and ��i such that given any subsequence of T , there is a further subsequence
Tn such that

lim
Tn!1

E

24F (��Tn) + 1

Tn

�RTnX
i=1

(R (��i�1 k�) +R (��i k� ))

35 = F (�) + I (�) :
Then Lemma 5.1 implies the Laplace lower bound (5.1). The construction of suitable
��i and ��i turns on many of the same constructions as those used in the proof of the
second part of Lemma 4.5. We �rst de�ne � 2 P (S � S) as in (4.35). Then auto-
matically [�]1 = [�]2, and hence if we de�ne p as the regular conditional probability
such that � = [�]1 
 p, then [�]1 is invariant under p [4, Lemma 8.5.1 (a)]. De�ne
��i

:
= p for each i, and let

�
�Xi
	
be the corresponding Markov chain. Next de�ne

� (dx)
:
= q (x) � (dx) and

� (x)
:
=
d [�]1
d�

(x) =
1

Q� (x)

d [�]1
de� (x) : (5.4)

By (5.3), there is M < 1 such that 1=M � � � M , and due to the continuity of �,
� is also continuous. Notice that

� (dx) = (q (x)� (x))�1 [�]1 (dx) : (5.5)

Assumption (5.3) guarantees that

� log
Z
S�S

�1=2 (x) �1=2 (y) (e� 
 �) (dx; dy) <1 and�
Z
S
log � (x) [�]1 (dx) <1;

and (4.36) then implies that R (� ke� 
 �) <1. De�ne A as in (4.43). Let ��i be the
exponential distribution with mean

�
A�
�
�Xi�1

���1 for each i. Thus we can construct
a Markov jump process �X (t) using ��i and ��i instead of � and �, and the in�nitesimal
�L generator will be bounded and continuous and takes the form:

�Lf (x) = A� (x) q (x)
Z
S
[f (y)� f (x)] p (x; dy) :
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(5.5) and the fact that [�]1 is invariant under p imply
R
S

�
�Lf (x)

�
� (dx) = 0, and �

is an invariant distribution of the continuous time process �X. We claim that � is the
unique invariant distribution of �X. Indeed, by [6, Proposition 4.9.2] any invariant
distribution � for �X satis�es

R
S

�
�Lf (x)

�
� (dx) = 0. If we de�ne

e� (dx) := A� (x) q (x) � (dx)R
S A� (x) q (x) � (dx)

;

then e� is invariant under p. However, by Condition 2.4 and [4, Lemma 8.6.3(c)] the
invariant measure under p is unique, and hence the invariant measure of �X is also
unique. By the de�nition of ��T in (4.3),

��T (�) =
1

T

Z T

0
� �X(t) (�) dt

=
1

T

24 �RT�1X
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

� + � �X �RT�1
(dx)

0@T � �RT�1X
i=1

��i

q
�
�Xi�1

�
1A35 : (5.6)

Since S is compact we can extract a subsequence of T such that ��T converges weakly,
and by [6, Theorem 4.9.3] this weak limit is �. We claim the following along the same
subsequence.

Lemma 5.2 E
�
�RT =T

�
! A, E

hP �RT
i=1R (��i k� ) =T

i
!
R
S ` (A� (x)) q (x) � (dx) and

E
hP �RT

i=1 � �Xi�1 (dx) =T
i
! A [�]1 (dx).

Proof. As in the proof of the upper bound, a minor nuisance is dealing with the
residual time T �

P �RT
i=1 ��i. However, this is more easily controlled here since it is

bounded by an exponential with known mean. Since ��T ! � weakly, we have for
any bounded and continuous function f on the space of subprobability measures on
S that limT!1E [f (��T )] = f (�). To prove the �rst part of the lemma, de�ne f by

f (�)
:
=

Z
S
� (x) q (x) � (dx) :

Since both � and q are bounded and continuous, f is also bounded and continuous.
Using (5.5)

f (�) =

Z
S
� (x) q (x) � (dx) =

Z
S
[�]1 (dx) = 1: (5.7)
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Thus limT!1E [f (��T )] = 1. Now by (5.6) and the de�nition of �RT

E

24������f (��T )� f
0@ 1
T

�RTX
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

�
1A������
35

=
1

T
E

24� � �X �RT�1
�
q
�
�X �RT�1

�0@ �RTX
i=1

��i

q
�
�Xi�1

� � T
1A35

� 1

T
E

"
�
�
�X �RT�1

�
q
�
�X �RT�1

� �� �RT
q
�
�X �RT�1

�#

� M

T
E
�
�� �RT
�

� AM2

T
! 0

as T !1. Hence

lim
T!1

E

24f
0@ 1
T

�RTX
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

�
1A35 = 1:
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Recall that Fi is the �-algebra generated by
��
�X0; : : : ; �Xi

�
; (��1; : : : ; ��i)

	
. Then

E

24f
0@ 1
T

�RTX
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

�
1A35

=
1

T
E

24 �RTX
i=1

�
�
�Xi�1

�
q
�
�Xi�1

� ��i

q
�
�Xi�1

�
35

=
1

T
E

24 1X
i=1

�
�
�Xi�1

�
��i1

0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1A35

=
1

T

1X
i=1

E

24E
24� � �Xi�1� ��i1

0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1A������Fi�1

3535
=
1

T

1X
i=1

E

24� � �Xi�1�1
0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1AE [��ijFi�1]

35
=
1

T

1X
i=1

E

24� � �Xi�1�1
0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1A 1

A�
�
�Xi�1

�
35

=
1

AT
E

24 1X
i=1

1

0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1A35

=
1

A
E

� �RT
T

�
:

This completes the proof of the �rst statement in the lemma.
The proof of the second statement is similar. De�ne f by

f (�)
:
=

Z
S
` (A� (x)) q (x) � (dx) :

Then as before,

f (�) = lim
T!1

E [f (�T )] = lim
T!1

E

24f
0@ 1
T

�RTX
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

�
1A35 :
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Using g (x) = x` (1=x) and Lemma 4.3, we have

E

24f
0@ 1
T

�RTX
i=1

� �Xi�1 (dx)
��i

q
�
�Xi�1

�
1A35

= E

24 1
T

�RTX
i=1

`
�
A�
�
�Xi�1

��
��i

35
=
1

T

1X
i=1

E

24` �A� � �Xi�1��1
0@ i�1X
j=1

��j

q
�
�Xj�1

� � T
1AE [��ijFi�1]

35
= E

24 1
T

�RTX
i=1

1

A�
�
�Xi�1

�` �A� � �Xi�1��
35

= E

24 1
T

�RTX
i=1

g

 
1

A�
�
�Xi�1

�!
35

= E

24 1
T

�RTX
i=1

R (��i k� )

35 ;
and the second part of the lemma follows.

The proof of the third part follows very similar lines as the �rst two, and is
omitted.

Now the Laplace lower bound is straightforward. The de�nition of � in (4.35),
the continuity of �, and the bound (5.3) imply x ! R (p (x; �) k� (x; �)) is bounded
and continuous. By Lemma 5.2 and the chain rule for relative entropy,

lim
T!1

E

24F (��T ) + 1

T

�RTX
i=1

(R (��i�1 k�) +R (��i k� ))

35
= lim
T!1

E [F (��T )] + lim
T!1

Z
S
R (p (x; �) k� (x; �))E

24 1
T

�RTX
i=1

� �Xi�1 (dx)

35
+ lim
T!1

E

24 1
T

�RTX
i=1

R (��i k� )

35
= F (�) +AR (� k[�]1 
 �) +

Z
S
` (A� (x)) q (x) � (dx) :

Returning to the proof of the second part of Lemma 4.5, we �nd that with this
choice of A, � and �, the rate function I (�) coincides with AR (� k[�]1 
 �) +R
S ` (A� (x)) q (x) � (dx) (note that this � corresponds to a special of Lemma 4.5
where � :

= fx 2 S : � (x) = 0g is empty). This completes the proof of the Laplace
lower bound.
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6 On the boundedness of rate function

As pointed out in the Introduction, continuous time jump Markov processes di¤er
from the type of processes considered by Donsker and Varadhan in [2, 3], in that the
dynamics do not have a �di¤usive� component, and hence Condition 1.1 does not
hold. For jump Markov models, the process only moves when a jump occurs, and
there is no continuous change of position. For these processes the rate function is
bounded, whereas for the processes of [2, 3] the rate function is in�nity when the
target measure is not absolutely continuous with respect to the reference measure.
We now consider the source and implications of this distinction.

Consider a process satisfying all the conditions in Section 2 that has � as its
invariant distribution. In order to hit a di¤erent probability measure � 2 P (S), we
need to perturb the original dynamics, which includes the distortion of the Markov
chain transition probability � and the distortion of the exponential holding time
�. Each of these distortions must pay a relative entropy cost, and the minimum of
the (suitably normalized) sum of these costs asymptotically approximates the rate
function I (�). When � is singular with respect to �, the relative entropy cost from
the distortion of � can be made arbitrarily small, and the rate function is almost
entirely due to contributions coming from the distortion of �. We will illustrate this
point via the following example.

Recall the model mentioned in the Introduction, where the state space S is [0; 1],
the jump intensity is q � 1, and for each x 2 [0; 1], � (x; �) is the uniform distribution
on [0; 1]. The invariant distribution � is just the uniform distribution on [0; 1]. Now
consider a Dirac measure � := �1=2 as a target measure. � is not absolutely continuous
with respect to �. However, we can approximate � weakly via a sequence of prob-
ability measures that are absolutely continuous with respect to �. For each n 2 N
de�ne a probability measure �n by its Radon-Nikodym derivative �n with respect to
� according to

�n (x)
:
=

�
n� 1 for x 2

�
1
2 �

1
2n ;

1
2 +

1
2n

�
1
n�1 otherwise

:

Using the formula (3.2) for rate function, we have

I (�n) = 1�
�Z 1

0
(�n (x))1=2 dx

��Z 1

0
(�n (y))1=2 dy

�
= 1� 4(n� 1)

n2
:

According to the de�nition of rate function in Section 3.1, the rate function is bounded
above by 1. However I (�n)! 1 as n!1, and one can check that this is true for any
sequence of absolutely continuous measures converging weakly to �. Thus I (�) = 1.

We now consider �xed n 2 N and examine the perturbed dynamics that can hit the
measure �n. This is most easily understood by examining the minimizer in the varia-
tional formula for the rate function, whose form was suggested during the proof of the
Laplace principle lower bound in Section 5. Recall that ��i (�) and ��i (�) are perturbed
dynamics for the exponential holding time and the Markov chain, ��i (�) depends on�
�X0; ��1; �X1; ��2; : : : ; �Xi�1

	
and ��i (�) depends on

�
�X0; ��1; �X1; ��2 : : : ; �Xi�1; ��i

	
. ��i and
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�Xi are chosen recursively according to stochastic kernels ��i (�) and ��i (�). Speci�cally,
�si is de�ned by (1.10) using �Xi and ��i; �RT is de�ned by (4.2) using �si; and ��T is
de�ned by (4.3) using �Xi, ��i and �RT . Following the procedure in Section 5, we �rst
de�ne � 2 P (S � S) as in (4.35). Thus � is the product measure. As before, we
use [�]1 to denote the �rst marginal of � and p to denote the regular conditional
probability such that � = [�]1 
 p. Since � is a product measure de�ned by (4.35),
[�]1 and p are in fact the same measure and the density with respect to � can be
calculated as

d [�]1
d�

(x) =

� n
2 for x 2

�
1
2 �

1
2n ;

1
2 +

1
2n

�
n

2(n�1) otherwise : (6.1)

As in Section 5 let ��i
:
= p for each i. A direct calculation of A using formula (4.43)

shows that A = 4 (n� 1) =n2. Also, � de�ned in (5.4) reduces to

� (x) =

� n
2(n�1) for x 2

�
1
2 �

1
2n ;

1
2 +

1
2n

�
n
2 otherwise

:

As in Section 5, ��i should be the exponential distribution with mean
�
A�
�
�Xi�1

���1.
Hence if �Xi�1 falls into (1=2� 1=(2n); 1=2 + 1=(2n)), ��i would be the exponential
distribution with mean n=2, otherwise ��i would be the exponential distribution with
mean n= [2 (n� 1)]. Now the perturbed Markov jump process, denoted by �X (t), is
constructed using ��i and ��i de�ned as above. As proved in Lemma 5.2, the expected
value of the relative entropy cost

1

T

�RTX
i=1

(R (��i�1 k�) +R (��i k� ))

convergences to

I (�n) = AR (� k[�]1 
 �) +
Z 1

0
` (A� (x)) �n (dx)

as T ! 1. We have noted that p (x; dy) = [�]1 (dy) and � (x; dy) = � (dy), and by
using (6.1)

AR (� k[�]1 
 �)

= A

Z 1

0
R (p (x; �) k� (x; �)) [�]1 (dx)

=
4 (n� 1)
n2

�
log n� log 2� log (n� 1)

2

�
:

This converges to 0 as n!1. Hence the relative entropy cost that comes from the
distortion of the Markov chain converges to 0. For the second term, we haveZ 1

0
` (A� (x)) �n (dx) =

2 (n� 1)
n2

(log (n� 1) + 2 log 2� log n)� 4 (n� 1)
n2

+ 1
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which converges to 1 as n!1. Thus as �n approaches the target distribution �, the
relative entropy cost that comes from the distortion of Markov chain vanishes, and
the rate function becomes solely determined by the relative entropy cost that comes
from the distortion of exponential waiting times.

One can generalize the argument to more general discrete target measures, where
one utilizes the original dynamics to make sure neighborhoods of the various points
are visited, and then uses the time dilation to control their relative weight.

7 Appendix

7.1 Proof of inequality (4.30)

Proof. Recall that R (� k[�]1 
 �) <1, where [�]1 = [�]2 and e� is invariant under
�. Additionally, we also have Condition 2.6, i.e., there exists an integer N and a real
number c 2 (0;1) such that

�(N) (x; �) � ce� (�) (7.1)

for all x 2 S. Now let p be the regular conditional probability such that � = [�]1
 p.
Then

R (� k[�]1 
 �) = R ([�]1 
 p k[�]1 
 �) <1:

The chain rule of relative entropy implies that

R

�
[�]1 
 p
 � � � 
 p

N

[�]1 
 �
 � � � 
 �
N

�
= N �R ([�]1 
 p k[�]1 
 �) <1: (7.2)

Indeed, since [�]1 is invariant under p, for any integer n the n-th marginal of
�
[�]1 
 p
 � � � 
 p

n�1

�
is �

[�]1 
 p
 � � � 
 p
n�1

�
n

= [�]1 :

Hence (7.2) follows by induction:

R

�
[�]1 
 p
 � � � 
 p

n

[�]1 
 �
 � � � 
 �n

�
= R

�
[�]1 
 p
 � � � 
 p

n�1

[�]1 
 �
 � � � 
 �
n�1

�
+

Z
S
R (p k�) d

�
[�]1 
 p
 � � � 
 p

n�1

�
n

= (n� 1) �R ([�]1 
 p k[�]1 
 �) +
Z
S
R (p k�) d [�]1

= n �R ([�]1 
 p k[�]1 
 �) :

Let [�]kjj denote the conditional probability of the k-th argument of � given the j-th

argument of �. Note that one can de�ne a mapping from P
�
SN+1

�
to P

�
S2
�
such
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that each � 2 P
�
SN+1

�
is mapped to [�]1 
 [�]N+1j1. Since the relative entropy for

induced measures is always smaller, (7.2) implies

R
�
[�]1 
 p

(N)
[�]1 
 �(N)� <1:

Now since [�]1 is invariant under p, it is also invariant under p
(N), and therefore�

[�]1 
 p(N)
�
2
= [�]1. Using the chain rule of relative entropy again gives

R
�
[�]1

h[�]1 
 �(N)i
2

�
<1:

This implies (4.30), since

1 > R
�
[�]1

h[�]1 
 �(N)i
2

�
= R ([�]1 ke� )� log Z

S

d
�
[�]1 
 �(N)

�
2

de� [�]1

� R ([�]1 ke� )� log c;
where c is from (7.1).

7.2 Proof of Lemma 5.1

The proof of the representation is standard, save for the fact that RT is random. We
include a proof here for completeness.

Proof. De�ne for each k 2 N+

�kT (�)
:
=
1

T

"
RT^k�1X
i=1

�Xi�1 (�)
�i

q (Xi�1)
+ �XRT ^k�1 (�)

 
T �

RT^k�1X
i=1

�i
q (Xi�1)

!#
:

For any measure �k 2 P
�
(S � R+)k

�
, we can decompose �k as

�k = ��0 
 ��1 
 ��1 
 ��2 
 � � � 
 ��k�1 
 ��k: (7.3)

Choose the barred random variables �Xi and ��i according to ��i and ��i as before and
de�ne the corresponding �RT ^ k the following way: if

Pk
i=1 ��i=q

�
�Xi�1

�
> T , then

�RT ^ k
:
= �RT where �RT is the integer that satis�es

�RT�1X
i=1

��i

q
�
�Xi�1

� � T < �RTX
i=1

��i

q
�
�Xi�1

� ;
otherwise de�ne �RT ^ k

:
= k. We also de�ne

��kT (�)
:
=
1

T

24 �RT^k�1X
i=1

� �Xi�1 (�)
��i

q
�
�Xi�1

� + � �X �RT^k�1
(�)

0@T � �RT^k�1X
i=1

��i

q
�
�Xi�1

�
1A35 :
(7.4)

33

36



If we denote the multi-dimensional probability measure corresponding to the original

dynamics by �k 2 P
�
(S � R+)k

�
, i.e.,

�k
:
= �(k) �

 Y
k

�

!
;

then applying Lemma 3.2 gives

� 1
T
logE

h
exp

n
�TF

�
�kT

�oi
= inf
�k2P((S�R+)k)

"Z
(S�R+)k

F
�
��kT

�
d�k +

1

T
R
�
�k
�k�# :
(7.5)

By applying Theorem 3.3 repeatedly to R
�
�k
�k � we obtain

R
�
�k
�k� = E " kX

i=1

(R (��i�1 k�) +R (��i k� ))
#
:

We can thus rewrite (7.5) as

� 1
T
logE

h
exp

n
�TF

�
�kT

�oi
= inf
�k2P((S�R+)k)

E

"
F
�
��kT

�
+
1

T

kX
i=1

(R (��i�1 k�) +R (��i k� ))
#

(7.6)

Now for each �k 2 P
�
(S � R+)k

�
, we construct another measure b�k 2 P �(S � R+)k�

recursively as follows: de�ne b�0 := ��0 and b�1 := ��1. For all 2 � i � k, de�ne b�i�1 andb�i by
(b�i�1; b�i) =

(
(��i�1; ��i) if

Pi�1
j=1

��j
q( �Xj�1)

� T
(�; �) otherwise

:

Thus we return to the original dynamics with zero relative entropy cost after �RT .
De�ne b�k using b�i and b�i by (7.3). From the de�nition (7.4) we have E

�
F
�b�kT �� =

E
�
F
�
��kT
��
, and

E

"
kX
i=1

(R (b�i�1 k�) +R (b�i k� ))# = E
24 bRT^kX
i=1

(R (b�i�1 k�) +R (b�i k� ))
35

= E

24 �RT^kX
i=1

(R (��i�1 k�) +R (��i k� ))

35
� E

"
kX
i=1

(R (��i�1 k�) +R (��i k� ))
#
:

Hence we can rewrite (7.6) as

� 1
T
logE

h
exp

n
�TF

�
�kT

�oi
= inf
�k2P((S�R+)k)

E

24F ���kT�+ 1

T

�RT^kX
i=1

(R (��i�1 k�) +R (��i k� ))

35 :
(7.7)
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Using the pointwise convergence of both RT ^ k ! RT and �RT ^ k ! �RT as k !1,
by the dominated convergence theorem

lim
k!1

� 1
T
logE

h
exp

n
�TF

�
�kT

�oi
= � 1

T
logE [exp f�TF (�T )g] ;

lim
k!1

E
h
F
�
��kT

�i
= E [F (��T )] :

Also, by the monotone convergence theorem

lim
k!1

E

24 �RT^kX
i=1

((R (��i�1 k�) +R (��i k� )))

35 = E
24 �RTX
i=1

((R (��i�1 k�) +R (��i k� )))

35 :
Hence by taking limits on both sides of (7.7), we arrive at

� 1
T
logE [exp f�TF (�T )g] = inf E

24F (��T ) + 1

T

�RTX
i=1

((R (��i�1 k�) +R (��i k� )))

35
where the in�mum is taken over all controlled measures f��i; ��ig. This proves the
lemma.
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